Enhancing Hydrological Studies Through Precise Wetland Shape Mapping with LIDAR DEMS

Drs. Katie Glodzik & Matt Cohen

SCHOOL OF FOREST, FISHERIES, AND GEOMATICS SCIENCES

Depression wetlands are prevalent in North Florida

- They provide amphibian habitat, clean water, are C storage hotspots
- NWI and FL Land Cover data poorly capture them

Water intermittently flows via surface flow

Water percolates to groundwater

NO

Katie Glodzik

Patterns of Wetland Hydrologic Connectivity Across Coastal-Plain Wetlandscapes (Lee et al., 2023)

82°35'0"W

OSC

BICY

100

Finding: Across 67 OSC (Osceola) wetlands, water flowed out the top 30°13'30"N 10-40% of the time **Cross-section view** 56 elevation (m) 55 54 30°12'30"N 0 50

Water held in depressional wetlands has implications both small and regional

- Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions (Rajib et al. 2020)
- Helps us model how forest management affect regional water yield

Research on depressional wetland shapes has focused on prairie pothole wetlands

These have predictable depth-to-area ratios (Vanderhoof et al., 2015, 2016)

Jim Ringelman, Ducks Unlimited

The foundation of DEM-based mapping of depression wetlands: the Fill tool

DEM = Digital Elevation Model

Despite consistent depth-area ratios in prairie potholes, we suspect that does not occur in Florida

Project goals in Bradford Forest

- Improved maps of depression wetland presence and boundaries
- Depth-to-area patterns: is there a predictable relationship?

Unique challenges

- Extremely flat elevation \rightarrow lots of depressions are *not* wetlands
- Dense, tall vegetation → vegetation artifacts in DEM
- Bradford Forest is cut up with dirt roads \rightarrow but DEM can't "see" culverts

Vegetation-dense wetlands

Processing steps, starting with spill depths

Filled – DEM = Spill Depth

50x50 cell majority filter of cells requiring fill

(Dana Wilson Master Project, 2023)

Retain depressions meeting size, mean and max depth thresholds

DEM method offers more detail than NWI

	NWI	DEM-based
Number of wetlands	453	1,198
Median wetland size	1.24 HA	0.40 HA
Summed area	29.9 km ²	21.9 km ²
Wetlands missing from the <i>other</i> dataset	40/453	484/1,198

1. NWI often identifies large, rough wetland

2. DEM-based method identifies new wetlands, often small (mean=3,899 m²)

Tends to

identify

Better at finding small wetlands. Boundaries are more

fine-tuned

Can we predict wetland depth from area? No

In-progress: adjusting for culverts and roads

 Arc-Python script finds telltale signs of culvert and cut a line across the road

In-progress: Remote sensing water index to validate wetlands and exclude non-wetlands

• Water in Wetlands (WiW) method to find standing water, even among vegetation (Lefebvre et al., 2019)

Using annual-averaged Landsat infrared, WiW identified frequently saturated area

Implications

- In North FL, we cannot assume consistent depth-to-area relationship for estimating volume
- DEM-based depths are required to estimate volumes held by depressional wetlands
- Using DEM uncovers more wetlands than NWI and more precise boundaries

